IoT in Industry 4.0: Applications and challenges

Dua Noor¹, Abdul Basit¹,

¹Department of Computer Science, SMIU Karachi, Pakistan <u>duanoormcs002@gmail.com</u>, abdulbasit@gmail.com

Sagheer Hussain Mirani²

²Department of Information Technology, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Nawabshah, Pakistan <u>Sagheermirani714@gmail.com</u>

Abstract: The Internet of Things (IoT) enabled devices involve different types of data. These devices named as sensors are responsible for generating real world data based on the physical properties they measure. For example, temperature sensor produced temperature readings. Sensor collects data continuously or periodically, providing a stream of information that reflects changes in environment or conditions. Relating to the IoT, data from sensors transmitted to the central system usually through wireless communication protocols. The collected data can be utilized for various purposes such as monitoring, analysis and decision making or triggering actions. This study provides a review of IoT and industrial IoT (IIoT). Further, this paper highlights Applications, challenges and tools in detail.

Keywords: IoT, IIoT, Sensors, Data acquisition and Security

1. INTRODUCTION

IoT (Internet of Things) and Industry 4.0 [6] are closely related to concepts that revolutionize industries' operational processes by adopting advanced IoT-based systems to improve competence, connectivity, and automation. Industry 4.0 represents a transformative era characterized by the fusion of digital technologies with traditional industrial processes, fundamentally reshaping the way of manufacturing. With the IoT, artificial intelligence (AI), big data analytics, and automation, businesses across sectors have the opportunity to optimize efficiency, enhance productivity, and drive innovation like never before. It is the interconnection of every device with internet enabling them to send and receive data.

1.1 Key component of IoT

a. Device and sensors: IoT enabled devices [8] involves different types of data. These devices named as sensors are responsible for generating real world data based on the physical properties they measure. For example temperature sensor produced temperature readings. Sensor collects data continuously or periodically [9], providing a stream of information that reflects changes in environment or conditions. Relating to the IoT, data from sensors transmitted to the central system usually through wireless communication protocols [10]. The collected data is very important for the future for various purposes including monitoring, data analysis and decision making or triggering actions.

b. Connectivity: IoT network architecture with the integration of protocols technically allows gadgets and sensors to communicate and share information to the centralized physical system [11]. IoT provide several platform in different areas of study to be successful and efficient, selecting appropriate connectivity option is critical.

The connectivity require basic technologies as Wi-Fi, Bluetooth and BLE (Bluetooth low energy), zigbee, z-wave, LoRa (Long Range), NB – IoT (Narrowband IoT) and LTE – M and 5G. However each technology has its own range of communication and having few important protocols to be followed whenever deployed in the IoT based network [12][13]. However few important consideration are range requirement, power consumption, data rates, scalability, cost, security, network availability, standardization and interoperability and latency requirement [14]. IoT devices can also be connected within a network by using hybrid technology as edge computing and over – the – air (OTA) [15].

c. Data processing: Data processing is a critical component of IoT ecosystem, involving collection, analysis and interpretation. The few important aspects of data processing can be considered are data collection which involves sensor data, actuators and connectivity [16]. The other aspect is data transformation which bases on wireless communication and protocols. The third aspect is edge computing which process the data near by the source instead of centralized cloud servers. Edge computing [17] has many advantage like reducing latency by processing data locally, optimizer bandwidth [18] by transmitting only relevant information and enhancing privacy for data security.

1.2 Paper structure:

In this paper, Section 1 presents an introduction in detail about IoT and IIoT. Section 2 presents a literature review on IoT and Section 3 with applications of IoT. Moreover, Section 4 and Section 5, discuss the challenges of IoT, and IoT and Industry 4.0, respectively. Finally, the paper is concluded in Section 6.

2. LITERATURE REVIEW

The industrial IoT has a great impact on the world. The researcher's interest is increasing day by day due to the rapid and effortless monitoring of production improvement. Many authors have proposed various studies with relevant studies. A few of the important studies are summarized in Table 1 below.

S.No	Author &	Objective	Outcome	Technology	Limitation
	Year				
1	X. Zheng, M.	Smart cities and	Designed a circular	Smart cities, IoT &	This can be better if
	Li, and J. Guo	edge computing	buffer queue at the	Cloud Computing	machine learning
	(2021)	paradigm	lower edge layer		model added for
					prediction
2	K. T. Putra	To propose edge	The results shows	FCL, Edge	In addition IoT
	(2021)	computing	reduction of data	computing, WSN	based devices can
		framework named	consumption by 95%		

Table 1. Literature review of relevant study

		federate	having error rate of		better with addition
		compressed	below 5% .		ML model
		learning (FCL)			
4	B. Khan	Healthcare	Model comparison	Big data, Machine	The comparison can
	(2021)	predictive analysis	as performance of	learning techniques	be performed on
			RF 88.32% average	named SVM, j48,	two or more dataset
			accuracy, 2.96	RBF, RF, HMM,	which can give
			ranked value, SVM	CDT, KNN, AIDE,	variations in model
			87.99% average	NB	training predictions
			accuracy & 3.83 RV		
5	L. Cui (2022)	To provide a	Results shows a	Research survey	The study can add
		detailed survey of	comprehensive		more details like
		health analytics in	review of papers		challenges and
		edge computing	having detailed		technologies related
		with IoT and	model, challenges		to IoT and machine
		Machine leaning	and application		learning which help
			based information		to improve health
					analytics
6	Morghan	To survey current	A comprehensive	Edge computing	Edge computing can
	Hartmann	and emerging edge	review material	provided detail	be more clear
	(2019)	computing, Health	focused for the		paradigm if IoT and
		analytics,	domain of emerging		WSN technologies
		architecture &	edge computing		added in Survey
		applications	architecture and		
			applications are		
			discussed		
7	L. Liu (2021)	To provide a	To provide a	Edge computing.	In addition few
		-	F	Lage companie,	in addition iew
		Vehicular edge	comprehensive detail	vehicular network	vechicular edge
		Vehicular edge computing	comprehensive detail review of vehicular	vehicular network	vechicular edge computing network
		Vehicular edge computing challenge and	comprehensive detail review of vehicular edge computing	vehicular network	vechicular edge computing network solution and few
		Vehicular edge computing challenge and opportunities	comprehensive detail review of vehicular edge computing	vehicular network	vechicular edge computing network solution and few research papers can
		Vehicular edge computing challenge and opportunities	comprehensive detail review of vehicular edge computing	vehicular network	vechicular edge computing network solution and few research papers can be added in survey
8	S. Hamdan	Vehicular edge computing challenge and opportunities To conduct	comprehensive detail review of vehicular edge computing This study provided	vehicular network ECAs – IoT, Data	vechicular edge computing network solution and few research papers can be added in survey However
8	S. Hamdan (2020)	Vehicular edge computing challenge and opportunities To conduct detailed survey	comprehensive detail review of vehicular edge computing This study provided for the detailed	ECAs – IoT, Data placement,	vechicular edge computing network solution and few research papers can be added in survey However architecture
8	S. Hamdan (2020)	Vehicular edge computing challenge and opportunities To conduct detailed survey Edge computing	comprehensive detail review of vehicular edge computing This study provided for the detailed survey of edge	ECAs – IoT, Data placement, orchestration	vechicular edge computing network solution and few research papers can be added in survey However architecture designed for IoT

		architecture for		services and Big	further if few
		ІоТ		data	different types of
					data devices added
					to collect text,
					image and video
					data
9	McEnroe	To study impact of	Detailed study	UAV & Edge	In addition few
	(2020)	edge computing in	regarding UAV	computing	challenges in UAV
		UAV Technical	technical aspect with		with edge
		Aspects	edge computing		computing can give
			applications		better explanation
10	Garima Nain	To study edge	The study presented	The progress in	Cloud technologies
	(2022)	computing in	a detailed survey of	I4.0 following the	should be added for
		manufacturing	past present and	PDP loop and bring	better understanding
		industry	future of industry 4.0	intelligence to the	of Industry 4.0
		perspective	also called	EC	
			intelligence		
			manufacturing with		
			edge computing		
			technology		
11	Liang (2022)	To study and	The study provided a	The tools studies	Edge computing
		survey multi –	detailed multi –	Software defined	technologies like
		access edge	access Edge	network, Network	IoT, Cloud
		computing	computing (MEC)	function	computing and
		technologies	survey which	virtualization,	Machine learning
			focused on recent	information centric	aspects can be
			frameworks,	Networking, cloud	added for better
			concepts and	radio access	added smartness.
			capabilities.	network etc	
12	Wei Xu	To study practical	The study presented	Wireless	Distribute edge
	(2023)	distributed Edge	first mathematical	communication	aspects with Few
		learning	model for goral	system, B5G	prediction models
			oriented entropy as		can give better
			an optimization		implementation
			problem		logic for smart
					results

13	Hua, H.	To study edge	This study provided	AI based tools for	AI and Edge
	(2023)	computing	a detail overview of	EC optimization	Computing are good
		challenges,	EC architecture and		combination and it
		limitation of	optimization		can be better further
		Traditional	solutions regarding		to add AI solutions
		approaches of EC,	AI based approaches		in prespective of
		AI optimization	different fields		IoT architecture and
		results in other	perspective		cloud computing
		fields			challenges
14	Acheampong,	To study EC	This study provides	Supervised,	ML and EC
	A (2023)	offloading and	a ML based	unsupervised and	
		resource allocation	approaches for	Reinforcement	
		in perspective ML	offloading	Learning also Non-	
		model	techniques	machine learning	
		implementation to	evaluation with	approaches like	
		find out challenges	challenges and issue	Non-optimization,	
			in EC	game theory etc	
15	Chen, J	To focus Mobile	The results shows	MEC	MEC
	(2023)	edge computing	that the proposed		
		approaches in ML	model named		
		based model	QCOG-DG and		
		proposed as game	QCOG-SG. From		
		model for	which QCOG – DG		
		computation	model can find NE		
		offloading	solution in the MEC		
			Scenarios.		
16	Orfanos, V. A	To study MEMS	This study focuses	EC, IoT, WSN and	Cloud computing
	(2023)	performance	on tiny devices	MEMS	aspects is not added
		improvement with	communication		in their study which
		integration of	performance		is crucial part of
		WSN and IoT for	improvement with		IoT, WSN and EC
		Machine to	integration of IoT		
		machine	and WSN Modules		
		communication	with data integrity,		
			cost factors and		
			other technical		
			characteristics.		

17	H.Hua	To propose a AI	This study focuses	AI – Machine	The study only
	(2023)	based model with	AI and EC tradional	learning and Edge	focuses limitation
		EC results	approach for	computing	and challenges
		optimization	performance		while it is better to
			optimization witih		add applications and
			limitation and		each application AI
			challenges		solution
18	L.A.	A survey on Edge	Edge computing	Mobile edge	There could be
	Haibeh	computing	infrastructure,	computing (MEC)	many other
	(2022)		design, resource	with auto scaled	applications like
	(2022)		Management, and	and proactive	IoT and challenges
			Optimization	MEC-NFV	like cloud storage
			Approaches	infrastructure	infrastructure
19	R.Singh	To implement	Edge computing for	IoT sensor	However it is just
	(2022)	digital network in	IoT to monitor forest	environment	for the digitization
		forest ecosystem	by applying real time		of forest but few of
			sensing system and		the investigation
			energy harvesting		regarding water,
					soil and weather
					should be clearly
					need to be discussed
20	R.shukla	Crop health	To implement IoT	UAV and IoT	The data storage
	(2021)	assessment	based system with		medium should be
			machine learning to		added to process
			assess crop health		and store health
			with prediction		assessment data

3. IOT APPLICATIONS

IoT covers broader areas of applications in these days due to portability and smartness contributing to increase efficiency, automation, and improved decision making [19]. Few of important applications are discussed below:

Smart homes [22] covers smart thermostats, lightening system, security cameras for energy efficiency and improved security. This may further extends smart appliances like IoT enabled refrigerators, ovens, washing machine, smart LEDs and LCDs that can be controlled remotely. Home automation also involves personal assistance like voice activate personal assistance, face recognition, and thumb impression to open doors, windows or appliances[20][21].

Healthcare: Healthcare [24] involves broader applications of IoT which can useful data analytics and patient health analysis. The healthcare covers remote patient monitoring, telemedicine, wearable [25] health devices, smart medical devices and implants [26]. IoT given benefits in the healthcare domain as it can improve early detection of

health issues, improved patient health, and enhanced healthcare delivery.

- **a.** Smart cities: Smart cities [27] is technical and important application of IoT to monitor, control and traffic clearance root in large cities. Intelligence traffic management, smart parking solutions, waste management with connected bins, traffic signaling, rush hours alert are applications of IoT in smart cities [28]. These applications give improved and beneficial outcomes towards city and regional planning with the smart technology integration [29]. The IoT technologies give banifits improved traffic flow, efficient resource utilization, and sustainability.
- b. Smart agriculture: Smart agriculture [30] involves many applications regarding IoT and emerging fields. This covers soil monitoring and moisture control, connected tractors and machinery, drones for crop monitoring. This give very useful results to improve agricultural productions. The IoT give remarkable improvement in context of optimal resource utilization, increased crop yield, cost saving, real time monitoring, water quality justification and crop monitoring. Proper Soil and water conservation is crucial for agriculture land. Soil monitoring with effective soil contents by applying IoT based sensor devices can help to provide repaid update which can help to give quick recovery of deficiency by providing rich source of pesticides [32]. Smart irrigation is used for the water quality monitoring, water pouring rate, properly water pouring in all areas of land, plant soil moisture level and water sustatiblity time by time. It is important to control and monitor environmental parameters over the effect of sustainable irrigation management.
- **c. Environmental monitoring:** Environmental parameters monitoring can be monitored by deploying IoT based sensor ecosystem which can help human, animal and agricultural.

4. CHALLENGES OF IOT

a. Security: Although Internet of Things (IoT) gadgets are an important topic of conversation regarding security issues, focusing the network obscures the reasons behind nature of security [36]. IoT is important now for a variety of reasons to concert about security issues as discussed below:

b. Vulnerabilities: One major issue that befalls consumers and organizations on a regular basis is vulnerabilities. IoT devices are susceptible in part because they are not computationally capable of implementing built-in security [37]. The problems which can cause software and hardware level are important aspect in IoT based industrial management. These software's can be hacked by different weakness in the IoT system.

c. Malware: Even though majority frameworks of IoT have modest processing power, the risks nevertheless attack them [38]. In last decade, cybercriminals have effectively utilized this. Because IoT botnet malware is so adaptable and lucrative for attackers, it is one of the most commonly observed varieties. The most famous attack occurred in 2016, IoT devices was used by to assault important websites and service provider's products.

- **d. Inter-operability:** In the context of the Internet of Things (IoT), interoperability is the capacity of various components, services and functions as a one cluster [30]. IoT comprises on large variety of processing, networking, and storage technologies which collectively work over particular applications. Few of the interoperability concerns are discuss below:
- e. Standardization: For ensuring that one device can understand and communicate with each other common standard adaptation is important factor. Adopting common standard ensures communication process. Standard help to define protocols, data formats, and communication methods, making it easier from different vendors to interpreter [38]. IoT standards like MQTT (Message telemetry transport), CoAP (Constrained application protocol) are widely used for standardization.

5. IOT AND INDUSTRY 4.0

This time digital market also called 4.0 is one of key source for success to growing business needs. IoT arises several new opportunities for vendors, internet service providers and manufacturing firms. This fast growth of smart objects is about to reach 212 billion deployed all over world by 2020. In last few year number of smart objects are increased 300% as given statistics [39]. This growth is evidence to work with most efficient management of healthcare and manufacturing can increase economic growth. So many domain specific devices are developed for the many new applications which are growing day by day due to customer need. The population of digital devices. Grew due to IoT and emerging technology performance and reliability. Globally these devices are used to update life standard and fulfills business needs. Many digital device companies' offers smart, reliable, secure and fast digital communication devices to make market competition more competitive. More features in digital device will lead to more profit and customer attraction with economic growth [40]. That is why IoT is now more important industry and having direct impact on economic growth of company as well as country level even world level. Market competition provide base for implementation of technology within one region having all features with modern perquisites of objects such as battery life, sensing , heterogeneity [42], device look and operating system compatibility.

Figure 1 Industry 4.0 Evaluation

The figure 1 presented to explore the relationship of IoT and Industry 4.0. The evaluation of Industry 4.0 begins from the industry 1.0. The industry 1.0 was just beginning with basic tools whereas the industry 2.0 brought few remarkable reforms in industry 1.0. In this regard after few decades the industry shifted to microcontroller based machines which was revolution in the industry termed as industry 3.0. In these days all the technological advancement

is grown with latest sensors and actuators controlled my high performance computing. The high performance computing with other technologies like health, garments, transport, manufacturing industry grown very high. The edge of AI industry termed as industry 4.0 which is high standard and rapid growth over all the world with integration of microprocessor and tiny devices.

6. CONCLUSION

On the whole this study is about IoT and Industry 4.0. This study covers applications, challenges and security issues of IoT and latest trends of research. Whereas this can provide more detail about IoT. Industry 4.0 represents transformative era characterized by the fusion of digital technologies with traditional industrial process, fundamentally reshaping the way of manufacturing. The internet of things (IoT), artificial intelligence (AI), big data analytics, and automation, business across sectors have the opportunity to optimize efficiency, enhance productivity, and drive innovation like never before.

REFERENCES

- H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, "Edge Computing with Artificial Intelligence: A Machine Learning Perspective," ACM Comput. Surv., vol. 55, no. 9, 2023, doi: 10.1145/3555802.
- [2] L. A. Haibeh, M. C. E. Yagoub, and A. Jarray, "A Survey on Mobile Edge Computing Infrastructure: Design, Resource Management, and Optimization Approaches," IEEE Access, vol. 10, pp. 27591–27610, 2022, doi: 10.1109/ACCESS.2022.3152787.
- [3] R. Singh, A. Gehlot, S. Vaseem Akram, A. Kumar Thakur, D. Buddhi, and P. Kumar Das, "Forest 4.0: Digitalization of forest using the Internet of Things (IoT)," J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 5587–5601, 2022, doi: 10.1016/j.jksuci.2021.02.009.
- [4] R. Shukla et al., "Detecting crop health using machine learning techniques in smart agriculture system," J. Sci. Ind. Res. (India)., vol. 80, no. 8, pp. 699–706, 2021.
- [5] A. Goap, D. Sharma, A. K. Shukla, and C. Rama Krishna, "An IoT based smart irrigation management system using Machine learning and open source technologies," Comput. Electron. Agric., vol. 155, no. September, pp. 41–49, 2018, doi: 10.1016/j.compag.2018.09.040.
- [6] J. Wan et al., "Software-Defined Industrial Internet of Things in the Context of Industry 4 . 0," vol. 16, no. 20, pp. 7373–7380, 2016.
- [7] O. A. Alzubi, J. A. Alzubi, M. Alazab, A. Alrabea, A. Awajan, and I. Qiqieh, "Optimized Machine Learning-Based Intrusion Detection System for Fog and Edge Computing Environment," Electron., vol. 11, no. 19, pp. 1–16, 2022, doi: 10.3390/electronics11193007.
- [8] J. Xu, B. Gu, and G. Tian, "Review of agricultural IoT technology," Artif. Intell. Agric., vol. 6, pp. 10-22,

2022, doi: 10.1016/j.aiia.2022.01.001.

- [9] M. Haghi Kashani, M. Madanipour, M. Nikravan, P. Asghari, and E. Mahdipour, "A systematic review of IoT in healthcare: Applications, techniques, and trends," J. Netw. Comput. Appl., vol. 192, no. May, p. 103164, 2021, doi: 10.1016/j.jnca.2021.103164.
- [10] A. Ahamad, C. C. Sun, and W. K. Kuo, "Quantized Semantic Segmentation Deep Architecture for Deployment on an Edge Computing Device for Image Segmentation," Electron., vol. 11, no. 21, 2022, doi: 10.3390/electronics11213561.
- [11] M. Hartmann, U. S. Hashmi, and A. Imran, "Edge computing in smart health care systems: Review, challenges, and research directions," Trans. Emerg. Telecommun. Technol., vol. 33, no. 3, pp. 1–25, 2022, doi: 10.1002/ett.3710.
- [12] X. Hou, Z. Ren, J. Wang, S. Zheng, W. Cheng, and H. Zhang, "Distributed Fog Computing for Latency and Reliability Guaranteed Swarm of Drones," IEEE Access, vol. 8, pp. 7117–7130, 2020, doi: 10.1109/ACCESS.2020.2964073.
- [13] M. M. Kamruzzaman, B. Yan, M. N. I. Sarker, O. Alruwaili, M. Wu, and I. Alrashdi, "Blockchain and Fog Computing in IoT-Driven Healthcare Services for Smart Cities," J. Healthc. Eng., vol. 2022, 2022, doi: 10.1155/2022/9957888.
- M. Maray and J. Shuja, "Computation Offloading in Mobile Cloud Computing and Mobile Edge Computing: Survey, Taxonomy, and Open Issues," Mob. Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/1121822.
- [15] R. Das and M. M. Inuwa, "A review on fog computing: Issues, characteristics, challenges, and potential applications," Telemat. Informatics Reports, vol. 10, no. July 2022, 2023, doi: 10.1016/j.teler.2023.100049.
- [16] R. Akhter and S. A. Sofi, "Precision agriculture using IoT data analytics and machine learning," J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 5602–5618, 2022, doi: 10.1016/j.jksuci.2021.05.013.
- [17] H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, "Edge Computing with Artificial Intelligence: A Machine Learning Perspective," ACM Comput. Surv., vol. 55, no. 9, 2023, doi: 10.1145/3555802.
- [18] L. A. Haibeh, M. C. E. Yagoub, and A. Jarray, "A Survey on Mobile Edge Computing Infrastructure: Design, Resource Management, and Optimization Approaches," IEEE Access, vol. 10, pp. 27591–27610, 2022, doi: 10.1109/ACCESS.2022.3152787.
- [19] R. Singh, A. Gehlot, S. Vaseem Akram, A. Kumar Thakur, D. Buddhi, and P. Kumar Das, "Forest 4.0: Digitalization of forest using the Internet of Things (IoT)," J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 5587–5601, 2022, doi: 10.1016/j.jksuci.2021.02.009.
- [20] R. Shukla et al., "Detecting crop health using machine learning techniques in smart agriculture system," J.

Sci. Ind. Res. (India)., vol. 80, no. 8, pp. 699–706, 2021.

- [21] S. Salvi et al., "Cloud based data analysis and monitoring of smart multi-level irrigation system using IoT," Proceedings of the International Conference on IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2017. pp. 752–757, 2017. doi: 10.1109/I-SMAC.2017.8058279.
- [22] K. Cao, Y. Liu, G. Meng, and Q. Sun, "An Overview on Edge Computing Research," IEEE Access, vol. 8, pp. 85714–85728, 2020, doi: 10.1109/ACCESS.2020.2991734.
- [23] M. H. Guo et al., "Attention mechanisms in computer vision: A survey," Comput. Vis. Media, vol. 8, no. 3, pp. 331–368, 2022, doi: 10.1007/s41095-022-0271-y.
- [24] S. Hamdan, M. Ayyash, and S. Almajali, "Edge-computing architectures for internet of things applications: A survey," Sensors (Switzerland), vol. 20, no. 22, pp. 1–52, 2020, doi: 10.3390/s20226441.
- [25] S. S. Esfahlani, H. Shirvani, J. Butt, I. Mirzaee, and K. S. Esfahlani, "Machine Learning role in clinical decision-making: Neuro-rehabilitation video game," Expert Syst. Appl., vol. 201, no. June 2021, p. 117165, 2022, doi: 10.1016/j.eswa.2022.117165.
- [26] T. Edition, "Book Review Python Machine Learning : Machine Learning and Deep Learning With Python," vol. 11, no. 1, pp. 67–70, 2021.
- [27] L. Fischer et al., "AI System Engineering Key Challenges and Lessons Learned †," pp. 56–83, 2021.
- [28] B. I. Akhigbe, K. Munir, O. Akinade, L. Akanbi, and L. O. Oyedele, "IoT Technologies for Livestock Management : A Review of Present Status, Opportunities, and Future Trends," 2021.
- [29] R. Majeed, N. A. Abdullah, I. Ashraf, Y. Bin Zikria, M. F. Mushtaq, and M. Umer, "An Intelligent, Secure, and Smart Home Automation System," vol. 2020, 2020.
- [30] J. Fan, Y. Zhang, W. Wen, S. Gu, X. Lu, and X. Guo, "The future of Internet of Things in agriculture: Plant high-throughput phenotypic platform," J. Clean. Prod., vol. 280, p. 123651, 2021, doi: 10.1016/j.jclepro.2020.123651.
- [31] A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, "Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0," Inf. Fusion, vol. 50, pp. 92–111, 2019, doi: 10.1016/j.inffus.2018.10.005.
- [32] J. Woetzel et al., "Smart Cities: Digital Solutions for a More Livable Future," McKinsey Co., 2018.
- [33] M. Alkhatib, M. El Barachi, and K. Shaalan, "An Arabic social media based framework for incidents and events monitoring in smart cities," J. Clean. Prod., vol. 220, pp. 771–785, 2019, doi: 10.1016/j.jclepro.2019.02.063.
- [34] M. Ammar, G. Russello, and B. Crispo, "Journal of Information Security and Applications Internet of Things : 34
 International Journal of Computing and Related Technologies, Volume 4, Issue 2

A survey on the security of IoT frameworks," J. Inf. Secur. Appl., vol. 38, pp. 8–27, 2018, doi: 10.1016/j.jisa.2017.11.002.

- [35] N. Rajabli, F. Flammini, R. Nardone, and V. Vittorini, "Software Verification and Validation of Safe Autonomous Cars: A Systematic Literature Review," IEEE Access, pp. 4797–4819, 2020, doi: 10.1109/ACCESS.2020.3048047.
- [36] A. Cyril Jose and R. Malekian, "Smart Home Automation Security: A Literature Review," Smart Comput. Rev., vol. 5, no. 4, pp. 269–285, 2015, doi: 10.6029/smartcr.2015.04.004.
- [37] V. Bhatt and S. Chakraborty, "Improving service engagement in healthcare through internet of things based healthcare systems," J. Sci. Technol. Policy Manag., vol. 14, no. 1, pp. 53–73, 2023, doi: 10.1108/JSTPM-03-2021-0040.
- [38] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, "Vehicular Edge Computing and Networking: A Survey," Mob. Networks Appl., vol. 26, no. 3, pp. 1145–1168, 2021, doi: 10.1007/s11036-020-01624-1.
- [39] W. Peng and O. Karimi Sadaghiani, "A review on the applications of machine learning and deep learning in agriculture section for the production of crop biomass raw materials," Energy Sources, Part A Recover. Util. Environ. Eff., vol. 45, no. 3, pp. 9178–9201, 2023, doi: 10.1080/15567036.2023.2232322.
- [40] N. Tariq, A. Qamar, M. Asim, and F. A. Khan, "Blockchain and smart healthcare security: A survey," Procedia Comput. Sci., vol. 175, no. 2019, pp. 615–620, 2020, doi: 10.1016/j.procs.2020.07.089.
- [41] C. Zeng, F. Zhang, and M. Luo, "A deep neural network-based decision support system for intelligent geospatial data analysis in intelligent agriculture system," Soft Comput., vol. 26, no. 20, pp. 10813–10826, 2022, doi: 10.1007/s00500-022-07018-7.
- [42] H. Sabireen and V. Neelanarayanan, "A Review on Fog Computing: Architecture, Fog with IoT, Algorithms and Research Challenges," ICT Express, vol. 7, no. 2, pp. 162–176, 2021, doi: 10.1016/j.icte.2021.05.004.
- [43] D. Rajapaksha, C. Tantithamthavorn, J. Jiarpakdee, C. Bergmeir, J. Grundy, and W. Buntine, "SQAPlanner: Generating Data-Informed Software Quality Improvement Plans," IEEE Trans. Softw. Eng., vol. 5589, no. c, pp. 1–24, 2021, doi: 10.1109/TSE.2021.3070559.

Received: 02 Feb, 2024, Accepted: 31 March 2024; Published: 29 April 2024