
Fluid Flow Algorithm to Solve Travel Salesman Problem

69 International Journal of Computing and Related Technologies Vol. 1 Issue. 1

 Fluid Flow Algorithm to Solve Travel Salesman Problem

Mudassir Khalil1 Jian-Ping Li2 Rafaqat Hussain3 Kamlesh Kumar4

Abstract

Travel Salesman Problem (TSP) is well known combinatorial optimization problem. Hamiltonian

path is required to solve TSP. This Hamiltonian path can be achieved by many methods. In this

paper a novel and efficient algorithm is discussed. The name of algorithm is Fluid Flow algorithm.

It works similar as flow of fluid when expands from a source. It starts from smallest triangle and

expands by keeping a closed path and captures its nearest possible point. It continues expansion

until all points included in that path. In this paper the efficiency of proposed algorithm is compared

with other algorithms and experimental results have proved that our proposed algorithm is more

efficient than Ant Colony and Genetic algorithms.

Keywords: Travel Salesman Problem (TSP), Big Data, TSP Big Instances, Fluid Flow Algorithm.

Ant Colony Algorithm, Genetic Algorithm

1 Introduction

To solve Travel Salesman Problem (TSP) with given in- stances one has to pass all points of that

instance and come back to the original point. The path taken should be the minimum from all

possible paths. This is called Travel salesman problem (TSP). TSP is very famous optimization

problem. In optimization problems best solution is needed to find from many available solutions.

TSP is included in NP-Complete class [1]. NP-complete problem are those which cannot be

solved in polynomial time by a deterministic algorithm, but a non-deterministic algorithm can do

it in polynomial time [2]. TSP has a long history and always been an inspirational topic for

researchers. The reason for it is that TSP problem is very easy to understand. This statement is true

when given instance is small but when instance are too high, this problem becomes complex to

solve and complexity increases exponentially. There are many algorithms to solve TSP. Some are

exact and some are heuristic. Exact algorithms are those which can provide exact solution of given

problem but the time taken to solve the problem is too high. Heuristic algorithms cannot always

be exact but can provide near to exact solution. Heuristic algorithms are fast as compared to exact

algorithm. For TSP heuristic algorithm save so much time as compared with exact algorithm, in

some cases years can be saved by using heuristic algorithms. There are two types of TSP problems,

symmetric TSP and asymmetric TSP [3]. Symmetric TSP have same path from one point to other

and for its return, but asymmetric have different paths between two points. Here difference

between paths is in terms of length of paths. In this paper we will deal only with symmetric TSP.

There are many algorithms to solve symmetric TSP. In this paper a brand new algorithm which is

called Fluid Flow (FF) to solve TSP fast and accurately is provided.

1 University of Electronic Science and Technology China, Chengdu, China engr.mudassirkhalil@gmail.com
2 University of Electronic Science and Technology China , Chengdu, China jpli2222@uestc.edu.cn
3 Shah Abdul Latif University Khairpur, Pakistan rafaqat.arain@salu.edu.pk
4 Sindh Madressatul Islam University Karachi, Pakistan kamlesh@smiu.edu.pk

mailto:engr.mudassirkhalil@gmail.com

Fluid Flow Algorithm to Solve Travel Salesman Problem

70 International Journal of Computing and Related Technologies Vol. 1 Issue. 1

Fluid Flow is a newly developed algorithm, very easy to understand and easy to implement. It

starts by calculation of a small triangle. To get this triangle first calculate a distance vector

between points of given problem. Then find a smallest value in the distance vector. This would be

the smallest path between two points. Now calculate the nearest point from these two points and

make a triangle by combining straight lines between these three points. This would be a desire

triangle in given instance. After having triangle next is to find nearest point from its edges. When

that point is found include that point into triangle path. That would become four edges path

(quadrilateral). Again previous step is repeated with quadrilateral path and include nearest point

into quadrilateral path. This step is repeated until all points are included in path. In the end resultant

path would be the path which has all points in it. This is a brief introduction of fluid flow algorithm.

The name fluid flow comes from fluids with similarity in movement when expands from a source.

2 Literature Review

There are many algorithms to solve TSP problem. From currently available algorithms very

famous are, greedy or nearest neighbor, Christofides, K-OPT, Lin Kernighan and various branch-

and-bound algorithms. Nearest neighbor or Greedy algorithm is simplest algorithm. This algorithm

finds its neighbor which is near to current point and move towards that point. Greedy algorithm is

dependent on its initial point, if start point changes result of greedy algorithm may be change also.

Greedy algorithm is less efficient but very easy to implement [4]. Christofides Algorithm is

approximate algorithm to solve TSP. It gives solution which is 3/2 factor of exact solution [5]. To

solve TSP problem a C language program called Concorde is mostly used. This program can solve

bigger instances in several minutes. Concorde given as one of the best exact TSP solver available

so far while reviewing both heuristic and exact solutions of the TSP by Hahsler and Hornik In

2007 [6] [7]. K-opt mostly used technique for TSP problem. It can be 2-opt, 3-opt or can be more.

Mostly used forms are 2-opt and 3-opt [8]. Lin-Kernighan uses 2-opt and 3-opt to solve TSP

problem and is one of the best algorithm to solve TSP. This is because it is an adoptive algorithm.

Lin-Kernighan decides at every step how many edges need to swap [9], [10], [11]. Genetic

Algorithm and Ant Colony Algorithm both are heuristic methods to solve TSP problem very

quickly [12], [13]. These algorithms do not find exact solution of problem but can find near to

exact solution.

Ant colony algorithm works similar to ants, which always find smaller path between their food

and nest.

3 TSP Proposed Algorithm

To solve TSP big instances FF algorithm work efficiently. This algorithm consists of two parts.

First part divide problem in to smaller parts. Second part start form lowest possible triangle in all

divided parts and expand all triangles by combining near points. This FF algorithm will help first

part to join sub problems into big one. We take Euclidean distances to perform test results, which

are given in examples below. Detail of algorithms is in following.

Fluid Flow Algorithm to Solve Travel Salesman Problem

71 International Journal of Computing and Related Technologies Vol. 1 Issue. 1

F
ig

u
re

 1
:

8
 p

o
in

ts
 s

o
lu

ti
o

n
 b

y
 u

se
 o

f
F

F
 a

lg
o

ri
th

m

F
ig

u
re

 2
:

S
o

lu
ti

o
n

 o
f

d
iv

id
ed

 p
ar

ts
 i

n
 F

F
 a

lg
o

ri
th

m

Fluid Flow Algorithm to Solve Travel Salesman Problem

72 International Journal of Computing and Related Technologies Vol. 1 Issue. 1

A. Fluid Flow (FF) Algorithm

In this paper Fluid Flow algorithm takes input which is given in TSP lib [14]. This input

is Euclidean distance of cities. Every city is considered as point (x, y) on plan Algorithm

first calculates Distance Matrix of all points using Eq 1.

2

1

(,) (,) ()

n

k k

k

d x y d y x x y



  
 (1)

Here k can be any number greater than zero. Fig 1 explains the basic idea of fluid flow

algorithm using 8 points example. In Fig 1(a) point 1, 4 and 7 which are close to each other

combine to make a triangle. At this point path contains three points which are 1, 4 and 7.

In Fig 1(b) closest point 6 to that triangle is included in to path. In Fig 1(c) (d) (e) points 2,

5 and 3 are included respectively into path. In Fig 1(e) last point which is point 8 is

included in path as there is no point left so the path contains all point is solution of given

problem. To find the nearest point form edge of path Specific distance Sd is used which is

given in Eq 2.

𝑟𝑎𝑛𝑔𝑒𝑌 =
max(𝑌)−min (𝑌)

10

𝑟𝑎𝑛𝑔𝑒𝑋 =
max(𝑋)−min (𝑋)

10

𝑆𝑑 =
𝑟𝑎𝑛𝑔𝑒𝑋+𝑟𝑎𝑛𝑔𝑒𝑌

𝐿
 (2)

In Fluid flow algorithm first there is division of bigger problem into small problems. For

this Fig 2 procedure is used. In Fig 2(a) a big problem is divided in three parts which are

displayed differently by design and colors. In Fig 2(b) first left and middle parts are solve

by using procedure discussed with Fig 1 example. Similarly right and middle part is solve

which is displayed in Fig 2(c). In Fig 2(d) intersection of Fig 2 (b) (c) is shown. This

intersected path is combined with solution of left part which is shown in Fig 2 (e). In the

end solution of right part is combined with result of Fig 2 (e). This gives final solution of

problem given in Fig 2 (f). Following is a algorithmic form of Fluid Flow algorithm.

4 Algorithm

Input: C // XY coordinates of cities.

Output: Path // Set of edges

Require: dMat // Distance Matrix calculate using Eq. 1

Require: Sd // Specific Distance calculate using Eq.2 Path

 // Minimum cost triangle

while iterate == True do

 Cities = C − Path

 nearPoints = nearPoints (Cities, Path, Sd)

 for all nearPoints do

 for all Path do

 Dist // minimum distance from path to point

Fluid Flow Algorithm to Solve Travel Salesman Problem

73 International Journal of Computing and Related Technologies Vol. 1 Issue. 1

 if minDist > Dist then

 minDist = Dist

 else

 minDist = minDist

 end if

 end for

 Path = Path + minDist

 end for

 if path == C then

 iterate = false

 end if

end while

function nearPoints (Cities,P ath,Sd)

 for all Path do

 for all Cities do

 Distance // Min distance from nearest point

 if Distance < Sd then

 nearPoint = City

 end if

 end for

 end for

end function

5 Experimental Results

In these experiment author uses Genetic algorithm, Ant colony algorithm and FF algorithm

because these all are heuristic algorithms. These experiments are performed on Matlab 2010 by

use of 1.6 GHz core i5 machine have 4GB RAM. For Ant Colony test results there were 200 ants

selected and 20 iterations are performed on each sample test. In table 1 execution time and length

of final path for three algorithms are given on various instances. In table 2 approximation ratio of

FF algorithm compares with Ant Colony and Genetic algorithms is given.

6 Conclusion and Future Work

FF algorithm is intelligent in its work, because it works similar to flow of fluid which always finds

shortest path. Another advantage of proposed algorithm is, it is very easy to understand. FF

algorithm works efficiently compare to other algorithms because in other algorithms solution is

dependent on comparison with all other points. In FF algorithm this path finding is done with

fraction of possible p3oints, which saved much of execution time. Experimental results prove this

algorithm is more efficient than Genetic and Ant colony algorithm. FF algorithm is an approximate

algorithm but not exact algorithm. In future work and another possible step would be added to

divide the larger problem to multiple smaller problems, and at the end, results will be combined.

This would be like divide and conquer algorithm. This division can be implemented on distributed

system, which will increase efficiency of proposed algorithm.

Fluid Flow Algorithm to Solve Travel Salesman Problem

74 International Journal of Computing and Related Technologies Vol. 1 Issue. 1

Table 1: Results using FF Algorithm

Instance

Name

FF Genetic Algorithm Ant Colony Algorithm

Speed

(Sec)
Distance

Speed

(sec)
Distance

Speed

(sec)
Distance

berlin52 0.51 8506 8.34 8506 4.6 8986

ulysses22 0.08 77 6.3 77.3 1.588 77.22

eil51 0.52 460 8.5 436.6 4.6 535

eil76 0.676 595.7 10.04 556.5 8.12 694

kroA100 1.191 25639 12.2 22273 13.42 33894

kroA150 3.31 30591 28.5 44369 24.3 51453

kroA200 6.34 33318 21.4 35572 47.25 46815

kroB100

1.09 24541 12.5 23779 13.17 31538

kroB150 2.99 29675 17.06 28873 27.14 44712

kroB200 5.57 34295 20.57 36699 47.35 49817

kroC100 1.422 22904 12.2 23710 12.826 34333

kroD100 1.03 23662 12 21777 12.68 33263

kroE100 1.18 23956 12.4 23150 12.97 33589

pr1002 137 318986 167 670590 - -

gr666 274 3780 40.7 4739 572 6395

rat575 65 8076 36 10464 371 14155

Table 2: Approximation ratio of FF Algorithm compares with Ant Colony and Genetic Algorithms

Instance Name

Oprx ratio vs

Genetic Algorithm

Oprx ratio vs

Ant Colony Algorithm

Speed Dist Speed Dist

berlin52 1.930556 0.985061 1.064815 1.040649
ulysses22 5.833333 0.99217 1.47037 0.991144

eil51 3.373016 0.871457 1.825397 1.067864
eil76 2.73123 0.916804 2.208923 1.143328

kroA100 2.884161 0.838308 3.172577 1.275697
kroA150 2.141247 1.361388 1.825695 1.578749
kroA200 1.30967 0.953213 2.891677 1.254488
kroB100 2.948113 0.930284 3.106132 1.233833
kroB150 1.313318 0.941562 2.089299 1.458079
kroB200 1.32113 1.019558 3.041105 1.383998
kroC100 2.758933 0.990227 2.900498 1.433887
kroD100 3.053435 0.920336 3.226463 1.405756
kroE100 3.031785 0.966355 3.171149 1.402112
pr1002 1.113333 2.065986 - -
gr666 0.108824 1.22772 1.529412 1.656736
rat575 0.202247 1.249284 2.08427 1.689947

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (Grant No.

61370073), the National High Technology Research and Development Program of China (Grant

No. 2007AA01Z423), the project of Science and Technology Department of Sichuan Province.

Fluid Flow Algorithm to Solve Travel Salesman Problem

75 International Journal of Computing and Related Technologies Vol. 1 Issue. 1

References

[1] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory

of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[2] S. A. Mulder and D. C. Wunsch, II, “Million city traveling salesman problem solution

by divide and conquer clustering with adaptive resonance neural networks,” Neural

Netw., vol. 16, no. 5-6, pp. 827–832, Jun. 2003. [Online]. Available:

http://dx.doi.org/10.1016/ S0893-6080(03)00130-8

[3] R. Jonker and T. Volgenant, “Transforming asymmetric into symmetric traveling

salesman problems,” Operations Research Letters, vol. 2, no. 4, pp. 161 – 163, 1983.

[Online]. Available:

http://www.sciencedirect.com/science/article/pii/0167637783900482

[4] D. S. Johnson, Local optimization and the Traveling Salesman Problem. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1990, pp. 446–461. [Online]. Available:

http://dx.doi.org/10.1007/BFb0032050

[5] M. Bl¨aser, K. Panagiotou, and B. V. R. Rao, A Probabilistic Analysis of Christofides’

Algorithm.

[6] Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 225–236. [Online].

Available: http: //dx.doi.org/10.1007/978-3-642-31155-0 20

[7] M. Hahsler and K. Hornik, “Tsp – Infrastructure for the traveling salesperson problem,”

Journal of Statistical Software, vol. 23, no. 2, pp. 1–21, December 2007. [Online].

Available: http://www.jstatsoft.org/ v23/i02/

[8] S. A. Mulder and D. C. Wunsch, II, “Million city traveling salesman problem solution

by divide and conquer clustering with adaptive resonance neural networks,” Neural

Netw., vol. 16, no. 5-6, pp. 827–832, Jun. 2003. [Online]. Available:

http://dx.doi.org/10.1016/ S0893-6080(03)00130-8

[9] K. Helsgaun, “An effective implementation of k-opt moves for the linkernighantsp,” in

Roskilde University, 2007. Case, 2006, p. 109.

[10] K. Helsgaun, “An effective implementation of the lin-kernighan traveling salesman

heuristic,” European Journal of Operational Research, vol. 126, pp. 106–130, 2000.

[11] H.-K. Tsai, J.-M. Yang, Y.-F. Tsai, and C.-Y. Kao, “An evolutionary algorithm for

large traveling salesman problems,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 34, no. 4, pp. 1718–1729, Aug 2004.

[12] R. Baraglia, J. I. Hidalgo, and R. Perego, “A hybrid heuristic for the traveling salesman

problem,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 6, pp. 613–622,

Dec 2001.

[13] C. L. Valenzuela and A. J. Jones, “Evolutionary divide and conquer (i): A novel genetic

approach to the tsp,” Evolutionary Computation, vol. 1, no. 4, pp. 313–333, Dec 1993.

[14] Y. Zhou, “Runtime analysis of an ant colony optimization algorithm for tsp instances,”

IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1083–1092, Oct

2009.

[15] “TSPLIB,” 2008, [Online]. Available:

http://comopt.ifi.uniheidelberg.de/software/TSPLIB95/

http://dx.doi.org/10.1007/BFb0032050

